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Abstract. Peer-to-Peer (P2P) networks are gaining increasing pogilamany
distributed applications such as file-sharing, networkegte, web caching, search-
ing and indexing of relevant documents and P2P networlatlaealysis. Many of
these applications require scalable analysis of data oR@Panetwork. This pa-
per starts by offering a brief overview of distributed dataimg applications and
algorithms for P2P environments. Next it discusses somleeoptivacy concerns
with P2P data mining and points out the problems of existitipapy-preserving
multi-party data mining techniques. It further points dwttmost of the nice as-
sumptions of these existing privacy preserving techniqaltspart in real-life
applications of privacy-preserving distributed data min{PPDM). The paper
offers a more realistic formulation of the PPDM problem asidtiaparty game
and points out some recent results.

1 Introduction

Peer-to-peer (P2P) systems such as Gnutella, Napster|ee-Kazaa, and Freenet are
increasingly becoming popular for many applications tleabgyond downloading mu-
sic without paying for it. P2P file sharing, P2P electroniencoerce, and P2P moni-
toring based on a network of sensors are some examples. Natgeintegration ap-
plications such as P2P web mining from the data stored in tbeder cache of dif-
ferent machines connected via a peer-to-peer network nvayuténize the business
of Internet search engines. A peer-to-peer clusteringrdlgo that clusters the URL-s
visited by each user (with due privacy-protection) in tdehént subjects by exchang-
ing information with other peers can be very useful for digring web-usage patterns
of users. This may help characterizing each user based arbte/sing pattern, and
forming clique of peers having similar interest. Also, thiay help routing query about
a particular topic to the most appropriate peer in a P2P n&twidhere can be many
other similar interesting information integration and Whedge discovery applications
involving data distributed in a P2P network.

Privacy is an importantissue in many of these P2P data mapptjcations. Privacy-
preserving data mining offers many challenges in this damghe algorithms must
scale up to very large networks and must be asynchronousedver, many of the
assumptions (e.g. semihonest, abides by the protocolegisting privacy-preserving
data mining algorithms make may not be valid. We may have speegs trying to
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sabotage the computation. This paper presents a highdeggeliew of an effort to ad-
dress some of these problem using game theoretic framewonprivacy-preserving
data mining.

The rest of the paper is organized as follows. In the nexi@e¢Section 2), we
present the related work on P2P computing and PPDM. A welingnapplication that
motivates the need for game theoretic PPDM algorithms isqmied next in Section 3.
The next few sections are devoted on describing the gamegti@approach for PPDM
and the preliminary results. We conclude the paper in Se&io

2 Rdated work

This section presents a very brief related work both on datangand privacy preserv-
ing techniques in P2P networks.

2.1 DataMiningin P2P Networks

Knowledge discovery and data mining from P2P network is atiredly new field with
little related literature. Some researchers have devdlspeeral different approaches
for computing basic operations.g. average, sum, max, random sampling) on P2P net-
works,e.g. Kempeet al. [8], Boyd et al. [4], Jelasity and Eiben [9] and Bawa et al. [3].
Mehyaret al. [15] proposed a new approach for averaging on a P2P networg tie
Laplacian of a graph.

All the approaches mentioned so far require resources tlade slirectly with the
size of the system. For more scalable approaches, reseatored the paradigm
of local algorithms for doing data mining in P2P netwotlacal algorithms [12, 16, 2,
11,10] are ones in which the result is usually computed usifggmation from just a
handful of nearby neighbors. Still, it is possible to makérdee claims about the cor-
rectness of the result. These algorithms are very scalallesaurce requirements are
independent of the size of the system and a good fit for P2Ponktvgpanning millions
of peers. Lately, simple thresholding badedal algorithms have been used for com-
plicated data mining tasks in P2P systems: majority votir8,[L2 norm thresholding
[18] and possibly more. For a detailed survey interestedeesaare urged to look into

[5].

2.2 Privacy Preserving Data Mining

Privacy-preserving data mining can be roughly divided iwto groups: data hiding
and rule hiding. The main objective of data hiding is to tfan® the data or to design
new computation protocols so that the private data stillaies private during and/or
after data mining operations; while the underlying dataguas or models can still be
discovered. Techniques like additive perturbation [1]}tiplicative perturbation [14],
secure multi-party computation [20] all fall into this cgéey. On the other hand, rule
hiding tries to transform the database such that the semsities are masked, and all the
other underlying patterns can still be discovered [17]. &detailed review of PPDM
and game theory please refer to [7].



3 Motivational Application: Peer-to-peer Client-Side Web-usage
Mining

Before we address the privacy issues in P2P data mining, esept a motivational
application in which preserving privacy of a peer’'s datangpaortant. We discuss an
exciting application of web usage mining using the conceptient-side web cache
and P2P technology based on [13] and emphasize the needvacypm such mining
operation.

Traditional web mining has spent a considerable amountfoftefn analyzing the
server logs. However, since the results of these analysis@raccessible to the users,
the later are deprived of their own generated knowledge vbadmn potentially be used
for better searching, routing, forming trust-based comitiesetc. Dynamically aggre-
gating peers with similar interests could greatly enhaheectpability of each individ-
ual, could facilitate knowledge sharing, and reduce thevoek load. In order to solve
this problem, we present a framework where the users theasehn form implicit
communities by sharing their own browsing behavior. Thioug the remainder of this
discussion, we use the term ‘peer’ and ‘user’ interchanlyetrefer to the same phys-
ical entity — a user (peer) browsing the Internet and coratkttt other users (peers) in
the network.

This application uses the frequency of the web domains ahesevisited during a
period of time as the user’s profile vector. Each user maistaprofile vector that keeps
the frequency of visit of common web-domains. To measursithéarity between two
users’ browsing patterns, we use inner product betweenghaile vectors. To do that,
the application usearder statistics-basetbcal algorithm to measure inner product be-
tween different users’ profile vector and that informatisused to form communities
such that users with high similarity in profile vectors arageld in the same commu-
nity. One of the big advantages of this framework is, any aietal technique that can
measure similarity in metric space (vectors, trees andlkbkgd¢an be plugged into this
framework , and help to form similarity based communitiesolutwill share common
interest between each other to enhance browsing/onlineriexpe.

It is obvious that user privacy is a big concern in such a P3#icaiions. Since
formation of these communities involves sharing the adbualvsing data, it may vio-
late the privacy of the users. For any user it is imperatie s browsing data is not
revealed in its raw form while forming these communities heotvise it is almost im-
possible to convince web users to take part in such P2P catiqutvhere every user
shares some data, does some computation and finally geffitteglfeom the aggregate
result (by being part of a similar minded community). In arttesafeguard each user’s
private data, Liu et al. [13] have used cryptographic seaurer product protocols to
compute the inner product between two users’ profile vectdosvever, such secure
multi-party protocols are based on honest/semi-honest garty assumptions, which
assumes that a user or a group of users will follow the prétasspecified and will
not form a malicious liaison or do anything to extract prévatformation from other
users. In real-life, however, such ideal assumptions fadirasince very little control
exists on each user’s behavior and there is no centralizexdliz@tor or administrator
to monitor and govern all user activity. Besides, experitaeresults reported by Liu
et al. [13] show that this secure protocol is (1) computatiyrvery intensive (2) ex-



pensive from communication point of view and (3) not scaailall. It is evident from
the results that privacy preserving techniques designestémdard data mining is not
going to work well in a P2P setup. A completely different aggoh is necessary to en-
sure privacy in a P2P setup. That motivates us to introdu@eegheoretic approach
to privacy preserving data mining which does not suffer framove-mentioned issues
and relaxes some of the assumptions regarding user behavior

4 Game Formulation

In this section we present a high level overview of PPDM dthars designed as games.

We model the large-scale multi-party data mining applaragias games where each
participant tries to maximize its benefit or utility scoredptimally choosing the strate-
gies during the entire PPDM process. [e2t= {d;, ds, - - - d,, } be a collection of: dif-
ferent nodes where each node represents a party with someysensitive data. The
goal is to compute certain functions of this multi-partyalasing some PPDM algo-
rithm. Most existing PPDM algorithms assume that everyypeobperates and behaves
nicely.

For example, consider a well-understood algorithm for cotimg sum based on the
secure multi-party computation framework (details to bgcdibed in Section 5). Upon
receipt of a message, a node performs some local compytaelianges its states, and
sends out some messages to other nodes. Most privacyyaresdata mining algo-
rithms for multi-party distributed environments work in imndar fashion. During the
execution of such a PPDM algorithm, each node may have tthaniolg objectives,
intentions, responsibilities: (1) perform or do not penficthe local computation, (2)
communicate or do not communicate with the necessary pa(8g protect the local
private data, (4) attack the messages received from othgepéor divulging privacy-
sensitive information regarding other parties, and (5hucid with others to change the
protocols for achieving any of the above tasks. Our goal iseev multi-party privacy-
preserving data mining in a realistic scenario where théigiaating nodes are not
necessarily assumed to be well-behaved; rather we cortsider as real-life entities
with their own goals and objectives which control their owrategies for dealing with
each of the above listed dimensions.

The nodes in the system can adopt different strategies fomamication, computa-
tion, collusion or launching of a privacy breach attack. fnaich decision is motivated
by the utility associated with the choice. The utility vakepresents the benefit that a
node gets by performing (not performing) a necessary conation or computation
step that is part of the protocol or by colluding (not collugli with other nodes in the
network. The actions change the local state of the party€ehitiee play of the game by
playeri can therefore be viewed as a process of traversing througme ¢ree where
each tree-node represents the local state described bgrpkynitial state and mes-
sages communicated with other nodes. Eachrruepresents a path through the tree
ending at a leaf node. The leaf node for path (nuis)associated with a utility function
valueu;(r). A strategyo; for player: prescribes the action for this player at every node
along a path in the game tree. In the current scenario, th&egyr prescribes the ac-
tions for computing, communication, privacy protectioriyacy-breaching attack, and



collusion with other parties. A strategy for playeri essentially generates the tuple
(I 7(R) 1) 1(A) 1()) where thels are indicator variables for a node’s compu-
tation, communication (receive and send), privacy attakallusion strategies. Now
we can put together the overall objective function for thengaf multi-party secure
sum computation.

uwi(7) = wmyich(]i(M)) + wr’icrU(Ii(f)) + ws_’ich(]i(S)) + Wy Z g(v; (1)
jeD-G

Herech(Ii(M)) denotes the overall utility of performing a set of operatidh,, in-
dicated byIM (similarly for other notations)y’s are the weights of the corresponding
computation, computation etd), denotes the set of all nodeS, denotes the set of
colluding nodes ang(v;) is the benefit of nodg, due to its local value,.

5 Illustration: Multi-Party Secure Sum Computation

Suppose there areindividual sites, each with a valug,j = 1,2,...,s. It is known
thatthe sum = Z;Zl v; (to be computed) takes an integer value in the rande. . ., N —
1. The basic idea of secure sum is as follows. Assuming sitesod@ollude, site 1
generates a random numbRmuniformly distributed in the rang®, N — 1], which is
independent of its local valug . Then site 1 add® to its local valuev; and transmits
(R + v1) modN to site 2. In general, foi = 2, ..., s, site: performs the following
operation: receive a valug_; from previous site — 1, add it to its own local value
v; and compute its modulu¥. Then site 1, which know®, can subtraci? from z;

to obtain the actual sum. This sum is further broadcast tothér sites. For this secure
sum protocol one may construct different utility functidresed on different parameters
such as cost of communication, computation or the cost afdaing a privacy attack.
It can be shown that a privacy-breach attack on a secure sotmcpt by a single node
might not be very successful. Similarly it can be shown thatutility of collusion in
secure sum protocol depends on the size of the network, théeiof colluding nodes,
and the range of values at the different nodes. [7].

5.1 GameEquilibrium

Let us consider this simple unconstrained version of thecihje function givenin 1. In
order to better understand the nature of the landscape teinsider a special instance
of the objective function where the node performs all the camication related activi-
ties as required by the protocol resulting in the followirgjeetive function (neglecting
the constant term contributed by the communication-rdltetors):

(@) = Won iU (L) + g Y g(v;)
JED-G

Figure 1 shows a plot of this function as a functiorth(Ii(M)) andk, the number of
colluding parties. It shows that the optimal solution takeslue ofc > 1. This implies



Fig. 1. Plot of the overall objective function. The optimal strateégkes a value of > 1.

that in a realistic scenario for multi-party secure sum cotation, parties will have a
tendency to collude. Therefore the non-collusibn 1) assumption that the classical
SMC-algorithm for secure sum makes is sub-optimal.

One way to deal with the problem is to penalize by increadiegdost of compu-
tation and communication. For example, if a party suspecitsllading group of size
k' (an estimate of) then it may split every number used in a secure sum ankbng
different parts and demaridrounds of secure sum computation one for each of these
k' parts. This increases the computation and communicatisirbyd:-fold. This linear
increase in cost with respect kg the suspected size of colluding group, may be used
to counteract any possible benefit that one may receive hingia team of colluders.
The modified objective function with the penalty term is

u; (o) = wm_,ich(Ii(M)) +Wgi D jep_g 9(vj) —wp x k'

Herew, refers to the weight associated with the penalty. Figured?vsta plot of the

modified objective function. It shows that the globally opl strategies are all for
k = 1. The strategies that adopt collusion always offer a suby@dtsolutions. An

appropriate amount of penalty for violation of the policy ynmashape the objective
function in such a way that the optimal strategies corredgorihe prescribed policy.
Our plan is to borrow the concept of Cheap Talk from game thaod economics [6]
in order to develop a distributed mechanism for penalizioticg violations. Cheap
Talk is simply a pre-play communication which carries notcBsfore the game starts,
each player engages in a discourse with each other in ordefldence the outcome
of the game. For example, in the well known Prisoner’s Dileangame one might
add a round of pre-play communication where each playeramces the action they
intend to take. Although cheap talk may not effect the oute@fiPrisoner’'s Dilemma
game, in many other games the outcome may be significantlyeinded by such pre-



Fig. 2. Plot of the modified objective function. The globally optinstrategies are all fok = 1.

game communication. We would like to use Cheap Talk to conicat® the threat of
penalty. Cheap talk works when the parties depend on eaeh, tieir preferences are
not opposite to each other, and the threat is real. The #igoih the following section
describes a variant of the secure sum computation techigieffers a distributed
mechanism for penalizing policy violations using a chediplibe mechanism.

5.2 Secure Sum with Penalty: Distributed Control

Consider a network of nodes where a node can eithergoed or bad. Bad nodes col-
lude to reveal other nodes’ information; whgeod nodes follow the correct secure sum
protocol. Before the secure sum protocol starts, the cwlfu(bad) nodes send invita-
tions for collusions randomly to nodes in the network. Iflsaanessage is received by
agood node, then it knows that there are colluding groups in thevord. To penalize
nodes that collude, thigood node splits its local data inte’ random shares wheré

is an estimate of the size of the largest colluding group fssible way to estimate
this could be based on the number of collusion-invitatiom@ad node receives. On
the other side, thbad nodes, on receiving such invitation messages, form a faliy ¢
nected networks of colluding groups. After this the secura protocol starts, as in the
traditional secure sum protocol, nodes forward their owta dafter doing the modulus
operation and random number addition). However, good ndde®t send all the data
at one go — rather they send random shares at each round a&dine sum. Hence, it
takes several rounds for the secure sum to complete.

5.3 Reaults

We have implemented the above cheap talk-based solutibowtiand performed multi-
agent simulations in order to study the behavior of the agdilitis experiment assumes



that the agents are rational in the sense that they choasa@that maximize their
utility function. The details of the experimental setup described in [7]. The results
obtained from our simulation are represented by the folomigures.

Initially we start with a fixed percentage (say 30%) of the emtb bebad. After
every round each node measures the cost (or penalty) irgatdue to collusion. If the
penalty sustained is too high (a dynamic threshold culyesgt by the user), some of
the bad nodes decide not to collude again. Once thad@odes turn int@ood ones,
they send deallocate messages to their colluding groupalandet their estimates of
collusion sizek’ same as the size of the collusion to which they belonged.

We observe in Figure 3 that for subsequent rounds of the sestum computation
the cost or overall penalty assigned decreases as the nuibad nodes decreases.
When the ratio obad to good nodes is significantly low, we can observe that the cost
almost reaches an equilibrium. This is because the cotitibof the penalty function
becomes negligible and the total cost is governed mainiheybmputation and com-
munication costs that remain almost constant over suaeessinds of secure sum with
hardly any collusion.

In Figure 4 we have shown how the nhumbebatl nodes decrease with successive
rounds of secure sum computation. Tl nodes in the network start any round of
secure sum with the intention to collude. However, some @fitlilo not end up in any
collusion since their invitations for collusion are notiprocated by thegood nodes. So
at any round ifb denotes the number dfd nodes (nodes with intentions to collude),
the actual number of colluding nodkss less than or equal ta The plot with circular
markers demonstrate the decreasing valudsinfconsecutive rounds of secure sum
whereas the one with square-shaped markers presents tieasiag values df. In ei-
ther case, we see thatlaer k decreases, the rate of their convergence to zero gradually
falls due to the significantly low ratio ajood to bad nodes in the network. The third
plot in Figure 4 represents the decrease in the numbleadhodes in a network with
an initial count of 60% bad nodes. We observe that even if tmelrer ofbad nodes in
the network be double, the algorithm still converges to #raestate where the number
of colluding nodes in the network tend to zero.

6 Conclusion

This paper presented an overview of a relatively new modeloofiputation for dis-
tributed systemsiz. P2P model of computing. It argued that we need highly scalabl
and efficient algorithms for doing data integration in suochinments. Further it pre-
sented a web-mining application using some of the existi2ig f2chnologies. It also
pointed out that many of the existing privacy-preservintadaining algorithms often
assume that the parties are well-behaved and they abidestprdiocols as expected.
The paper offered a more realistic formulation of the PPDigbfgm as a multi-party
game where each party tries to maximize its own objectiveibityu

The paper opens up many new possibilities. It offers a newasgah to study the
behavior of existing PPDM algorithms using a game theoegifmroach and invent new
onesviz. PPDM algorithms for computing inner product, clusteringd association
rule learning.
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